

Thermomechanics of continuous mediums

In brief

> Course langage: French

Presentation

Learning objectives

The course is divided into two distinct parts

- Part 1: Compressible Fluid Mechanics
- To acquire the knowledge necessary to understand compressible flows
- To know the theoretical basis of compressible aerodynamics
- Understand the main mechanisms induced by the effects of compressibility
- Know how to calculate the characteristics of straight or oblique shock waves
- Know how to calculate flows in Laval nozzles
- Part 2: Thermomechanical Behavior of Solid Materials
- Know the main types of behavior of solids
- Understand the thermodynamic framework underlying any behavior model
- Know how to use the most common models

Description of the programme

- Part 1: Compressible Fluid Mechanics
- General introduction examples of compressibility in aeronautics/space
- Reminder of fluid mechanics
- Effects of compressibility Mach waves
- Conservation of energy Saint-Venant equations
- Application to the study of the Laval nozzle Straight shock
- Oblique shocks and curved shocks
- Meyer-Prandtl expansion
- Part 2: Thermomechanical behavior of solid materials
- Thermoelasticity
- Heat exchanger

Thermomechanics of continuous mediums

- Thermoviscoelasticity
- Self-heating
- Elastoplasticity
- Metal forming

Generic central skills and knowledge targeted in the discipline

- Understand the basics of compressible fluid mechanics (C2)
- Understand the effects of compressibility, particularly in aeronautics and thermopropulsion (C2)
- Know how to calculate the characteristics of shock waves (C2)
- Understand the basics of thermomechanics of solids (C2)
- Know the main thermomechanical behaviors of solids (C2)

How knowledge is tested

- * DS = Written evaluation of 2 x 1 h (85%)
- * CC = un CR de TP (15 %)

Bibliography

- P.K. Kundu et I.M. Cohen, Fluid mechanics, 4e édition, Elsevier, 2010
- W.E. Carscallen et coll., Introduction to compressible fluid flow, CRC Press, 2014
- J. Lemaître et coll., Mécanique des matériaux solides, éd. Dunod, 2009

Teaching team

- Olivier Boiron
- Thierry Désoyer
- Dominique Eyheramendy
- Yannick Knapp

Total des heures		30h
СМ	Master class	16h
TD	Directed work	12h
ТР	Practical work	2h

Useful info

Thermomechanics of continuous mediums

Name responsible for EU

Lead Instructor

Olivier Boiron Solivier.boiron@centrale-med.fr