

Nouvelles applications quantiques : du GPS à l'interféromètre atomique

Nouvelles applications quantiques : du GPS à l'interféromètre atomique (N'ouvrira pas en 2025-2026!!!)

Fn bref

> Langue de cours: Français

Présentation

Objectifs d'apprentissage

Ce cours entend témoigner des développements récents de la technologie quantique. Ces recherches appartiennent à ce que l' on appelle aujourd' hui la seconde révolution quantique, la première révolution quantique correspondant aux années héroiques (1900-1930) durant lesquelles la théorie quantique a été élaborée (cfr le cours de 1A, programme alpha).

La seconde révolution a commencé, en gros, dans les années '80, avec le développement de nouveaux protocoles de communication (exemple: cryptographie quantique) et de nouveaux algorithmes quantiques, en parallèle avec le développement de nouvelles technologies visant à préparer et contrôler l' évolution de systèmes quantiques intriqués (photons, ions, atomes etc).

Certaines technologies quantiques en sont encore a l'état embryonnaire mais d'autres technologies sont éprouvées et font deja partie de notre vie de tous les jours (exemples: laser, semi-conducteurs). Le GPS fait partie des applications quantiques les plus récentes qui ont changé notre quotidien.

Il requiert l'usage d'horloges atomiques entièrement basées sur la physique quantique avec des corrections prédites dans le cadre de la théorie de la relativité restreinte et de la relativité générale.

Les capteurs basés sur l'interférométrie atomique (gravimètres à atomes froids) ont eux aussi fait leurs preuves, même si ils ne touchent pas encore le grand public. Ils permettent cependant de mesurer la valeur du champ de gravité (g) avec tellement de précision qu'on les utilise pour détecter la présence de nappes pétrolifères dans le sous-sol terrestre.

L' objectif du cours est

Nouvelles applications quantiques : du GPS à l'interféromètre atomique

(N'ouvrira pas en 2025-2026!!!)

1 de décrire en detail et de manière approfondie la boite a outils quantique tant théorique (TDu) qu'expérimentale (CCh) permettant de comprendre ces applications.

2 de consacrer du temps (6 h) à des travaux de type bibliographique plus exploratoires réalisés en autonomie, en groupes restreints, sur certaines technologies quantiques plus récentes et en plein développement (horloge optique, refroidissement laser et autres).

Description du programme

- -horloges atomiques
- -systeme gps
- -corrections relativistes sur les horloges atomiques embarquées en satellite
- -interférométrie atomique
- -travail bibliographique et exploratoire, à définir en concertation avec les élèves.

Compétences et connaissances scientifiques et techniques visées dans la discipline

- C1 Innovation scientifique et technique :
- ``...L' élève apprendra à comprendre et manipuler de nouveaux formalismes et concepts qui permettent de décrire des systèmes quantiques en interaction avec leur environnement. Il/elle sera amenée de ce fait à développer de nouvelles compétences et en particulier à utiliser ce formalisme pour résoudre des problèmes simples, similaires aux problèmes traités en TD...."
- C2 Mai#trise de la complexité et des systèmes.
- ``...Un système quantique ouvert est par nature un système complexe, car il échappe a notre intuition classique. Les concepts nouveaux présentés dans la première partie du cours permettent de traiter cette complexité intrinsèque de manière élégante et synthétique. Cette approche contribuera à élargir la culture scientifique de l' élève, ce qui constitute un prérequis pour aborder la complexité...."
- -C5 vision stratégique
- ``...Dans la seconde partie du cours (recherche et exploration bibliographique), l' élève sera amené à explorer un domaine scientifique en plein développement (cfr le plan quantique), ce qui, de facto, contribuera au développement de sa vision stratégique..."

Modalité de contrôle des connaissances

-CC1 60 % 2 devoirs surveilles combinant exercices de base comme vus en TD et questions de cours

Nouvelles applications quantiques : du GPS à l'interféromètre atomique

(N'ouvrira pas en 2025-2026!!!) – CC2 40 % sur le travail bibliographique (20 % pour le rapport et 20 % pour la présentation).

Bibliographie

- polys de cours pour la première partie
- · différents types de documents seront fournis et/ou sélectionnés dans le cadre du travail bibliographique

Equipe pédagogique

- Thomas Durt ECM
- Institut Fresnel et Caroline Champenois CNRS PIIM AMU

Total des heures		30h
CM	Cours Magistral	12h
TD	Travaux Dirigés	8h
AA		8h
AU		2h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Thomas Durt

thomas.durt@centrale-med.fr