

Ingénierie Quantique et Technologies Emergentes

Ingénierie Quantique et Technologies Emergentes

Fn bref

> Langue de cours: Français, Anglais

Présentation

Prérequis

Bases en optique et en physique quantique (cours de 1A); bases de probabilités/statistiques (cours de 1A)

Objectifs d'apprentissage

Ce module vise à présenter les bases théoriques nécessaires à la compréhension des technologies émergentes issues du domaine de la physique quantique, et à fournir un panorama actuel des domaines d'application de l'ingénierie quantique.

Description du programme

Cours et Travaux Dirigés.

- -Initiation à l'optique quantique: Aspects historiques ; De la quantification du champ EM aux états comprimés de la lumière et statistiques de photocomptage quantiques; Génération d'états comprimés du champs ; Application à l'imagerie et à la détection des ondes gravitationnelles (intervenant VIRGO/LIGO à définir) (JF),
- -Analogie entre optique géométrique/physique et mécanique classique/quantique (Hamilton versus de Broglie MA),
- -Cohérence et distribution de Wigner classique et quantique (MA),
- -Tomographie quantique (TD),
- -Aspects fondamentaux du gps (horloges atomiques, métrologie quantique TD),
- -Métrologie quantique à base d'atomes froids/ions piégés (intervenant C. Champenois PIIM),

Ingénierie Quantique et Technologies Emergentes

- -Plan quantique, ordinateur quantique, information quantique (TD),
- -Télécommunications quantiques (intervenants extérieurs)
- -Interaction matiere-lumiere (Brian Stout)

TP/Projets

- -Remises à niveau en physique quantique avec TPs numériques (approche de type boite noire) (TD),
- -Decoherence et effaceur quantique (TD plus demo. en plateforme optique TD et JF),
- -Nouvelles applications en rapport avec la polarisation (MA) (entre autres TP avec le kit Thorlabs de cryptographie quantique TD et JF).

Compétences et connaissances scientifiques et techniques visées dans la discipline

- -pour les projets: soft skills, mener un travail bibliographique, situer une problématique dans un contexte scientifique et applicatif général
- -pour les CC écrits: capacité de résoudre des problèmes simples en rapport avec le cours du type des exercices vus en TD et de comprendre la théorie (exemple: répondre à des questions de cours)
- -pour les TP. implication et participation, capacité d'observation et d'analyse

Modalité de contrôle des connaissances

Evaluation de type devoir sur table, rapports de TP, présentations travaux personnels issus d'un travail de bibliographique/modélisation/simulation, projets.

CC1 = 4 écrits d'une heure chacun = 60 %

CC2 = Comptes rendus de TP = 10 %

CC3 = Exposés = 10%

CC4 = Projets = 20%

Bibliographie

biblio spécifique encore à préciser.

Ingénierie Quantique et Technologies Emergentes

Equipe pédagogique

Thomas Durt

Julien Fade

Miguel Alonso

Caroline Champenois (AMU)

Other stakeholders to be defined

Total des heures		100h
CM	Cours Magistral	56h
TD	Travaux Dirigés	24h
TP	Travaux Pratiques	10h
PJ		10h

Infos pratiques

Nom responsable UE

Responsable pédagogique

Thomas Durt

thomas.durt@centrale-marseille.fr